A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration

نویسندگان

  • Keren Yizhak
  • Sylvia E Le Dévédec
  • Vasiliki Maria Rogkoti
  • Franziska Baenke
  • Vincent C de Boer
  • Christian Frezza
  • Almut Schulze
  • Bob van de Water
  • Eytan Ruppin
چکیده

Over the last decade, the field of cancer metabolism has mainly focused on studying the role of tumorigenic metabolic rewiring in supporting cancer proliferation. Here, we perform the first genome-scale computational study of the metabolic underpinnings of cancer migration. We build genome-scale metabolic models of the NCI-60 cell lines that capture the Warburg effect (aerobic glycolysis) typically occurring in cancer cells. The extent of the Warburg effect in each of these cell line models is quantified by the ratio of glycolytic to oxidative ATP flux (AFR), which is found to be highly positively associated with cancer cell migration. We hence predicted that targeting genes that mitigate the Warburg effect by reducing the AFR may specifically inhibit cancer migration. By testing the anti-migratory effects of silencing such 17 top predicted genes in four breast and lung cancer cell lines, we find that up to 13 of these novel predictions significantly attenuate cell migration either in all or one cell line only, while having almost no effect on cell proliferation. Furthermore, in accordance with the predictions, a significant reduction is observed in the ratio between experimentally measured ECAR and OCR levels following these perturbations. Inhibiting anti-migratory targets is a promising future avenue in treating cancer since it may decrease cytotoxic-related side effects that plague current anti-proliferative treatments. Furthermore, it may reduce cytotoxic-related clonal selection of more aggressive cancer cells and the likelihood of emerging resistance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data

Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of c...

متن کامل

Human Fibroblast Switches to Anaerobic Metabolic Pathway in Response to Serum Starvation: A Mimic of Warburg Effect

Fibroblasts could be considered as connective tissue cells that are morphologically heterogeneous with diverse functions depending on their location and activity. These cells play critical role in health and disease such as cancer and wound by Production of collagen, fibronectin, cytokines and growth factors. Absence of insulin and other growth factors in serum deprivation condition and similar...

متن کامل

MPI depletion enhances O-GlcNAcylation of p53 and suppresses the Warburg effect

Rapid cellular proliferation in early development and cancer depends on glucose metabolism to fuel macromolecule biosynthesis. Metabolic enzymes are presumed regulators of this glycolysis-driven metabolic program, known as the Warburg effect; however, few have been identified. We uncover a previously unappreciated role for Mannose phosphate isomerase (MPI) as a metabolic enzyme required to main...

متن کامل

MiR-6165 Dysregulation in Breast Cancer and Its Effect on Cell Proliferation and Migration

Background: ncRNAs have been identified as oncogenic drivers and tumor suppressors in any type of cancer. Although many classes of ncRNAs have been reported, most studies have been performed on microRNAs (miRNAs). miRNAs can regulate several target genes and affect important processes such as homeostasis, angiogenesis, cell proliferation, differentiation, and apoptosis. Located in the p75NTR ge...

متن کامل

Emerging metabolic targets in cancer therapy.

Cancer cells are different from normal cells in their metabolic properties. Normal cells mostly rely on mitochondrial oxidative phosphorylation to produce energy. In contrast, cancer cells depend mostly on glycolysis, the aerobic breakdown of glucose into ATP. This altered energy dependency is known as the "Warburg effect" and is a hallmark of cancer cells. In recent years, investigating the me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014